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Abstract. A recipe for generating orthonormal tensor basis is given, and as an illustration
the third-rank tensor describing the piezoelectric effect is discussed. Unlike the case of the
elastic stiffness (fourth-rank) tensor, the present method does not resort to the classical results
of the theory of invariants in generating the tensor basis. Employing this basis it is easy to
calculate the norm of the physical property and the results obtained are identical with those
derived by using the decomposition in terms of the irreducible tensors. In conclusion, a detailed
discussion comparing the three different methods of decomposition of tensors representing
physical properties of crystals is presented.

1. Introduction

Tensors are the most apt mathematical entities to describe direction-dependent physical
properties of condensed matter, andipso factothe tensor components characterizing physical
properties vary with the direction of the coordinate axes and hence do not determine directly
the material constants(Nowacki 1962). Physical properties are intrinsic characteristics of
matter and their values must, therefore, be specified without reference to any coordinate
system (Srinivasan and Nigam 1968, 1969, Srinivasan 1970, Juretschke 1974, Jerphagnon
et al 1978, Walpole 1981, 1984). It is, therefore, natural to seek to describe physical
properties of condensed matter in terms of quantities that are independent of the coordinate
system, namely, constants of matter or invariants.

In this connection, three different methods have been developed. The first method
(hereinafter referred to as method I) (Smith and Rivlin 1958, Smith 1967) treats the strain-
energy function as a polynomial in the strain components, and leads to the determination
integrity basis for invariant (under a subgroup of the orthogonal groupO(3)) functions
of the strain components for each one of the 32 crystallographic point groups. Using the
integrity basis, and orthonormal tensor basis which spans the space of elastic (stiffness)
constants is derived (Tu 1968) and an invariant norm is obtained. In the second method
(hereinafter referred to as method II), a (physical property) tensor is resolved along the
triad ν1, ν2, ν3 denoting the unit vectors along the crystallographic axes (Srinivasan and
Nigam 1968, 1969, Srinivasan 1970). The process of resolution yields the invariants. In the
third method (hereinafter referred to as method III) (Spencer 1970, Jerphagnonet al 1978)
the given tensor is decomposed into irreducible tensors occurring in the quantum theory of
angular momentum. As the constituent irreducible parts of different weights are orthogonal
it has been possible to define a norm which is invariant. It should be mentioned here that
whereas decomposition of a tensor of any rank can be carried through (Srinivasan 1985,
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1988) by methods II and III, the utility of method I seems to be restricted to the elastic
stiffness tensor.

In the present paper, the results of method II are used to develop a recipe for generating
orthonormal tensor bases. This is done in section 2, and section 3 comprises a discussion
comparing the three methods and establishing the link between them.

2. Orthonormal tensor basis

We begin with a brief outline of the method II. The form-invariant expressions (Srinivasan
and Nigam 1969) for the electrical susceptibility components, the piezoelectric coefficients
and the elastic stiffness coefficients are, respectively,

χij = νaiνbjAab (1a)

dijk = νaiνbj νckAabc (1b)

Cijkm = νaiνbj νckνdmAabcd (1c)

where summation is implied by repeated indices and this convention is followed throughout.
These expressions are referred to a Cartesian system Oxyz; νai are the components of the
unit vectorsνa (a = 1, 2, 3) along the crystallographic axes. The quantitiesAab, Aabc
andAabcd are invariants in the sense that when the Cartesian system is rotated to a new
orientation Ox ′y ′z′, then (1a) to (1c) take, respectively, the form

χ ′ij = ν ′aiν ′bjAab (2a)

d ′ijk = ν ′aiν ′bj ν ′ckAabc (2b)

C ′ijkm = ν ′aiν ′bj ν ′ckν ′dmAabcd . (2c)

It should be remembered thatν1, ν2, ν3 form a linearly independent basis in three
dimensions but are not necessarily always orthogonal. Their relative orientations in the
seven crystal systems are well known (Nye 1976).

The particular form of, say, (1c) for the cubic crystals (Thomas 1966, Srinivasan and
Nigam 1969) is

Cijkm = λδij δkm + µ(δikδjm + δimδjk)+ ανaiνaj νakνam (3)

whereλ andµ are the familiar Laḿe constants of isotropic elasticity. The expression (3)
can be derived by subjectingCijkm in (1c) to the appropriate point group symmetries of the
cubic class, and the details of the method are documented (Srinivasan and Nigam 1969) in
connection with obtaining the invariant elastic constants.

A similar exercise with (1b) will yield, for the class 6mm (Srinivasan 1970)

dijk = d1ν3iν3j ν3k + d2(ν3kδij + ν3j δik)+ d3ν3iδjk (4)

where ν3 is the sixfold axis. Similarly, for the uniaxial crystals, we have from (1a)
(Chandrasekhar and Srinivasan 1972)

χij = χ1δij + χ2ν3iν3j (5)

whereν3 is the unique axis andχ1 corresponds to isotropy.
The first step in the generation of orthonormal tensor basis is one of writing the

Kronecker deltaδai in the place ofνai in (1a) to (1c). They will assume, respectively,
the form

χij = δaiδbjXab (6a)

dijk = δaiδbj δckXabc (6b)

Cijkm = δaiδbj δckδdmXabcd (6c)
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where the coefficientsX are similar to theA in (1). Now one can subject the
expressions (6a)–(6c) to the symmetries of any crystal class and then derive the elements
of the basis appropriate to that class. Instead we can take the form-invariant expression for
any given class and straightaway replace theνai by the δai to obtain the elements of the
basis. As an illustration, let us consider the simplest example, namely, the expression (5).
According to the present scheme, the elements of the basis are

δij δ3iδ3j . (7)

However, these are neither orthogonal nor normalized. The next step, therefore, is to
orthonormalize them by the usual Gram–Schmidt process and the result is

T Iij =
1√
3
δij T IIij =

1√
6
(3δ3iδ3j − δij ). (8)

The analogue of (5) for the monoclinic system, withν2 normal to theν3ν1-plane, is
(Chandrasekhar and Srinivasan 1972)

χij = A11ν1iν1j + A22ν2iν2j + A33ν3iν3j + A31(ν3iν1j + ν1iν3j ). (9)

Under the replacement scheme the elements are

δ1iδ1j δ2iδ2j δ3iδ3j (δ3iδ1j + δ1iδ3j ). (10)

The elements of the orthonormal basis are those given by (8) together with

T IIIij =
1√
2
(2δ1iδ1j + δ3iδ3j − δij ) T IVij =

1√
2
(δ3iδ1j + δ1iδ3j ). (11)

In constructing this basis we have made use of the identity

δ1iδ1j + δ2iδ2j + δ3iδ3j = δij (12)

which is a particular case of a more general identity (Srinivasan 1985)

ν1iν1j + ν2iν2j − cosθ(ν1iν2j + ν2iν1j )+ sin2 θν3iν3j = sin2 θδij (13)

with νai is replaced byδai and θ = 90◦. In addition, if we generate the elements V and
VI from IV in (11) by cyclic permutation of{1, 2, 3}, then the set{I, . . . ,VI} will be the
complete orthonormal basis for the second-rank symmetric tensor.

Next, turning our attention to the third-rank tensor, in particular, to expression (4), the
elements obtained in accordance with the first step of the recipe are

δ3iδ3j δ3k δ3iδjk (δ3j δik + δ3kδij ). (14)

On subjecting these elements to the Gram–Schmidt process, we obtain

T Iijk = δ3iδ3j δ3k

T IIijk =
1√
2
(δ3iδjk − δ3iδ3j δ3k) (15)

T IIIijk = 1
2(δ3j δik + δ3kδij − 2δ3iδ3j δ3k).

These are the elements of the basis conforming to the symmetries of the class 6mm.
The set given by (15) is a subset of the set comprising the elements of the basis for the

most general case, namely, the noncentrosymmetric triclinic case. In the actual exercise,
therefore, we start with (6b) and follow the recipe to construct the orthonormal tensor
basis which spans the space of the third-rank tensor representing the piezoelectric effect and
having the index symmetrydijk = dikj ; the use of the identity (12) is, of course, understood.
The set of elements{I, . . . ,V,XVI } of the basis given in table 1. Elements labelled VI
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Table 1. Orthonormal basis.

T Iijk = δ3i δ3j δ3k T IIijk = 1√
2
(δ3i δjk − δ3i δ3j δ3k)

T IIIijk = 1
2(δ3j δik + δ3kδij − 2δ3i δ3j δ3k)

T IVijk = 1√
2
(2δ3i δ1j δ1k − δ3i δjk − δ3i δ3j δ3k)

T Vijk = 1
2 [2(δ1i δ3j δ1k + δ1i δ1j δ3k + δ3i δ3j δ3k)− δ3j δik − δ3kδij ]

T XV Iijk = 1√
2
(δ1i δ2j δ3k + δ1i δ3j δ2k)

Table 2. Elements of the orthonormal basis belonging to different crystal classes. For
convenience the elements are referred to only by their label in Roman numerals.

Element Class

I to X m(⊥ x2)
a

VI to XV m(⊥ x3)

I to III 4mm, 6mm mm2 — — 2(‖x3)

IV and V — mm2 4̄ — 2(‖x3)

XVI to XVIII 222, 4̄2m, 23, 4̄3m — 4̄ 2(‖x2)
a 2(‖x3)

XI to XV — — — 2(‖x2)

I to IV — — 4,6 3
XVI and XVII 422, 622 32 4,6 3
VI to X — 32 6̄ 3
XI to XV 6̄m2(m ⊥ x1)

a — 6̄ 3

I to III 3m(m ⊥ x1)
a

XI to XVII 3m(m ⊥ x1)

I to III 3m(m ⊥ x2)

VI to X 3m(m ⊥ x2)

XVI and XVII 6̄m2(m ⊥ x2) 3m(m ⊥ x2)

a Standard setting.
Ox1x2x3 is the standard rectangular Cartesian system (Nye 1976) the choice of which with
respect to the symmetry element is indicated parenthetically in those cases where alternate
settings are used.

to X can be obtained, respectively, from those with labels I to V by cyclic permutation of
{1, 2, 3}; and similarly XI to XV, respectively, from VI to X; and XVII and XVIII starting
from XVI. Table 2 gives the symmetry class of the different elements of the basis.

In terms of this basis, the decomposition ofdijk is given by

dijk =
∑
K

(d,TK)T Kijk (16)

where

(d,TK) = dijkT Kijk (17)

represents the inner product ofdijk and theKth element,T Kijk, of the basis. Table 3 lists
the expressions for the inner product ofdijk with each element of the basis. The formulae
are given in terms ofdijk in two-suffix notation with regard to the last two indices, the
replacement scheme (Nye 1976) being(11) → 1, (22) → 2, (33) → 3, (23, 32) → 4,
(31, 13)→ 5, (12, 21)→ 6; and

d111= d11 d122= d12 d123= 1
2d14 d131= 1

2d15 d112= 1
2d16. (18)
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Since the basis is orthonormal, the norm is given by

‖d‖ =
{∑

K

(d,TK)2
} 1

2

. (19)

As illustration we shall consider the class 3m, in the standard setting (Nye 1976) of the
coordinate system, for which we have

−d21 = d22 = − 1
2d16 d15 = d24 d31 = d32 d33 (20)

and all other components are zero. For this class, we see, from table 2, that the relevant
elements of the basis are I to III and XI to XVII. Taking the expressions for the respective
inner products from table 3, together with the relations (20), we obtain

‖d‖ = [d2
33+ 2d2

31+ d2
15+ 4d2

22]1/2. (21)

This agrees exactly with the norm derived using the decomposition in terms of the irreducible
tensors (Jerphagnonet al 1978).

Table 3. Expressions for the inner product. These are given in terms of the piezoelectric
coefficients in two-suffix notation.

(d,TI ) = d33 (d,TII ) = 1√
2
(d31+ d32) (d,TIII ) = 1

2(d15+ d24)

(d,TIV ) = 1√
2
(d31− d32) (d,TV ) = 1

2(d15− d24)

(d,TV I ) = d11 (d,TV II ) = 1√
2
(d12+ d13) (d,TV III ) = 1

2(d26+ d35)

(d,TIX) = 1√
2
(d12− d13) (d,TX) = 1

2(d26− d35)

(d,TXI ) = d22 (d,TXII ) = 1√
2
(d23+ d21) (d,TXIII ) = 1

2(d34+ d16)

(d,TXIV ) = 1√
2
(d23− d21) (d,TXV ) = 1

2(d34− d16)

(d,TXV I ) = 1√
2
d14 (d,TXV II ) = 1√

2
d25 (d,TXV III ) = 1√

2
d36

3. Discussion

The present method of constructing orthonormal tensor basis can easily be extended to
(physical property) tensor of any rank. On the other hand, method I works on the invariance
of the elastic strain-energy function under a finite group of transformations defining the
symmetry class of the crystal and appears to be applicable only to elastic constants. It treats
the strain-energy function as a polynomial in strain componentseij , for which the theory
of invariants (Weyl 1946) ensures the existence of a finite integrity basis. Smith and Rivlin
(1958, Smith 1967) have determined the integrity basis for invariant functions ofeij for each
of the 32 crystallographic point groups; and Tu (1968) used the integrity basis to construct
an orthonormal tensor basis for second-order as well as third-order elastic constants.

The same orthonormal basis for the elastic stiffness tensorCijkm can be generated
with the help of form-invariant expressions forCijkm reported (Srinivasan and Nigam 1969)
earlier. In this basis, the elements of the isotropic case (Tu 1968) need special consideration
for reasons which the following discussion will reveal.

The three isotropic tensors (Temple 1960) of rank four are

δij δkm δikδjm δimδjk (22)

which due to the symmetry

Cijkm = Cjikm = Cijmk = Cjimk (23)
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reduce to two

αijkm = δij δkm βijkm = (δikδjm + δimδjk) (24)

where we have used the same notation as Tu (1968). When these are orthonormalized they
become

AIijkm = 1
3αijkm AIIijkm =

1

6
√

5
(3βijkm − 2αijkm). (25)

With these two elements the nearest isotropic tensor for any crystal class is defined (Tu
1968) by

C0
ijkm =

II∑
K=I

(C,AK)AKijkm (26)

where the inner products in (26) are

(C,AI ) = (A+ 2B) (C,AII ) = 2√
5
(A− B + 3C) (27)

and

A = 1
3(C11+ C22+ C33) B = 1

3(C12+ C23+ C31) C = 1
3(C44+ C55+ C66).

(28)

In (28) we have used the well-known two-suffix notation for the elastic constants. On using
(27) and (28) in (26) to find expressions forC0

1111 = C0
11, C0

1122 = C0
12, andC0

2323 = C0
44,

we obtain

C0
11 = 1

5(3A+ 2B + 4C) C0
12 = 1

5(A+ 4B − 2C)

C0
44 = 1

5(A− B + 3C) = 1
2(C

0
11− C0

12).
(29)

These are precisely the expressions derived by Voigt (1889) for the orientational averages
of the components of elastic stiffness tensor for polycrystalline aggregates. If one uses the
elastic compliance tensorSijkm instead ofCijkm in (26), then one will obtain the analogue
of (29) for the compliance tensor, and those agree exactly with the orientational averages
derived by Reuss (1929) for the elastic compliance coefficients.

Next, when we take the contraction ofCijkm, respectively, withαijkm andβijkm in (24)
we have

(Cijkm, αijkm) = 3(A+ 2B) (Cijkm, βijkm) = 3(A+ 2C). (30)

These two can be identified as the two scalar (irreducible tensor of weight zero) parts of
method II (Jerphagnonet al 1978) but for the presence of the numerical factor of 3 in (30).
This difference arises due to the definition of the scalar part in which a factor of 1/3 is
introduced. Similarly, the nearest isotropic tensor for a second-rank tensor can be worked
out using the element I in (8). The only independent component of the nearest isotropic
tensor will be proportional to the trace of the second-rank tensor.

The nearest isotropic tensor, for obvious reasons, does not exist in the case of the
piezoelectric effect. However, the choice of the appropriate elements of the basis in a given
coordinate system can be illustrated as follows. Let us consider AT-cut quartz (Mason 1950)
belonging to the point group 32, for which, in the standard setting thez-axis is the threefold
axis and thex-axis, the twofold axis. Let this coordinate system be rotated through an
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angle−θ(= 35◦) about thex-axis, so that the newz-axis is perpendicular to the plane of
the AT-cut plate. The non-vanishing piezoelectric coefficients in the new system are(

d ′11 d ′12 d ′13 d ′14 · ·
· · · · d ′25 d ′26
· · · · d ′35 d ′36

)
. (31)

The form (31) corresponds to the class 2 with the difference that thex-direction is along
the twofold axis instead of they-direction (cf table 2). Hence the basis comprises the
elements VI to X and XVI to XVIII. Using the respective expressions from table 3, the
norm is

‖d‖ = [d ′211+ 1
2(d
′
12+ d ′13)

2+ 1
4(d
′
26+ d ′35)

2+ 1
2(d
′
12− d ′13)

2

+ 1
4(d
′
26− d ′36)

2+ 1
2(d
′2
14+ d ′225+ d ′213)]

1
2 . (32)

On expressing the primed coefficients in terms of the unprimed ones (in the standard setting)
and using the relations (Nye 1976)

d11 = −d12 = − 1
2d26 d14 = −d25 (33)

the equation (32) assumes the form

‖d‖ = [4d2
11+ d2

14]
1
2 . (34)

This is exactly what we would have obtained had we chosen the basis for the class 32 from
table 2.

Incidentally, the general invariance of the norm has been demonstrated. It is most
suitable for comparing the strength or the magnitude of any property in different materials
belonging to the same crystal class (Jerphagnonet al 1978); or different phases of the same
material. For example, the norms of the elastic stiffness tensor (in GPa) and the piezoelectric
tensor (in pC N−1), respectively, in the two phases of quartz are

Class ‖C‖ ‖d‖
α-quartz 32 253 4.65
β-quartz 622 255 1.89

where the data for the calculation of the norm have been taken from theLandolt–Börnstein
tables (1979). We find thatα-quartz is more piezoelectric thanβ-quartz, whereas the elastic
stiffness is almost the same in the two phases. The norm is very useful for selecting
suitable materials for electro-optic devices, transducers, modulators, acousto-optic devices
and acoustic delay lines.

To summarize, we have developed a recipe for generating an orthonormal tensor basis
for the decomposition of any tensor representing a physical property. This has been
accomplished without using the approach based on the theory of invariants (Weyl 1946).
As illustration we have considered an odd-rank tensor like the piezoelectric tensor, because
odd-rank tensors describing physical properties like piezoelectricity, acoustic gyrotropy may
not lend themselves to decomposition by the use of method I. It is very clear that the present
approach will work very easily for tensor of any rank. Whereas the calculation of the norm
using the decomposition of method II, although possible in principle but not attempted so
far, is very tedious and cumbersome, the present procedure based on the results of method II
appears to be simple and direct.

The norm provides the link between the three different methods of decomposing a tensor
describing a physical property. Regarding the advantages of different approaches, they are
well documented elsewhere (Jerphagnonet al 1978, Srinivasan 1985, 1988) and they will
not be discussed here.
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