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Abstract. A recipe for generating orthonormal tensor basis is given, and as an illustration
the third-rank tensor describing the piezoelectric effect is discussed. Unlike the case of the
elastic stiffness (fourth-rank) tensor, the present method does not resort to the classical results
of the theory of invariants in generating the tensor basis. Employing this basis it is easy to
calculate the norm of the physical property and the results obtained are identical with those
derived by using the decomposition in terms of the irreducible tensors. In conclusion, a detailed
discussion comparing the three different methods of decomposition of tensors representing
physical properties of crystals is presented.

1. Introduction

Tensors are the most apt mathematical entities to describe direction-dependent physical
properties of condensed matter, apsio factothe tensor components characterizing physical
properties vary with the direction of the coordinate axes and hence do not determine directly
the material constant{Nowacki 1962). Physical properties are intrinsic characteristics of
matter and their values must, therefore, be specified without reference to any coordinate
system (Srinivasan and Nigam 1968, 1969, Srinivasan 1970, Juretschke 1974, Jerphagnon
et al 1978, Walpole 1981, 1984). It is, therefore, natural to seek to describe physical
properties of condensed matter in terms of quantities that are independent of the coordinate
system, namely, constants of matter or invariants.

In this connection, three different methods have been developed. The first method
(hereinafter referred to as method I) (Smith and Rivlin 1958, Smith 1967) treats the strain-
energy function as a polynomial in the strain components, and leads to the determination
integrity basis for invariant (under a subgroup of the orthogonal gregg)) functions
of the strain components for each one of the 32 crystallographic point groups. Using the
integrity basis, and orthonormal tensor basis which spans the space of elastic (stiffness)
constants is derived (Tu 1968) and an invariant norm is obtained. In the second method
(hereinafter referred to as method 1), a (physical property) tensor is resolved along the
triad v1, v, v3 denoting the unit vectors along the crystallographic axes (Srinivasan and
Nigam 1968, 1969, Srinivasan 1970). The process of resolution yields the invariants. In the
third method (hereinafter referred to as method 1ll) (Spencer 1970, Jerphagabn978)
the given tensor is decomposed into irreducible tensors occurring in the quantum theory of
angular momentum. As the constituent irreducible parts of different weights are orthogonal
it has been possible to define a norm which is invariant. It should be mentioned here that
whereas decomposition of a tensor of any rank can be carried through (Srinivasan 1985,
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1988) by methods Il and lll, the utility of method | seems to be restricted to the elastic
stiffness tensor.

In the present paper, the results of method Il are used to develop a recipe for generating
orthonormal tensor bases. This is done in section 2, and section 3 comprises a discussion
comparing the three methods and establishing the link between them.

2. Orthonormal tensor basis

We begin with a brief outline of the method Il. The form-invariant expressions (Srinivasan
and Nigam 1969) for the electrical susceptibility components, the piezoelectric coefficients
and the elastic stiffness coefficients are, respectively,

Xij = VaiVbjAab (1a)
dijk = VqiVp;j VckAahc (1b)
Cijkm = VqiVbj VekVam Aabed (lC)

where summation is implied by repeated indices and this convention is followed throughout.
These expressions are referred to a Cartesian system; ©,; are the components of the

unit vectorsv, (@ = 1,2, 3) along the crystallographic axes. The quantities, A

and A, are invariants in the sense that when the Cartesian system is rotated to a new
orientation Q’y’z’, then (%) to (1c) take, respectively, the form

! ! !
Xij = Vi VpjAab (28)
A Y A
diji = Vi VpjVer Aabe (2b)
’ I N A A
Ciikm = VaiVbjVek Vam Aabed - (20)

It should be remembered that;, v,, v form a linearly independent basis in three
dimensions but are not necessarily always orthogonal. Their relative orientations in the
seven crystal systems are well known (Nye 1976).

The particular form of, say, ¢) for the cubic crystals (Thomas 1966, Srinivasan and
Nigam 1969) is

Cijkm = )\Sij(skm + /'L(Sikajm + (Siméjk) + QAVqiVgjVakVam (3)

whereA and . are the familiar Laré constants of isotropic elasticity. The expression (3)
can be derived by subjecting ;. in (1c) to the appropriate point group symmetries of the
cubic class, and the details of the method are documented (Srinivasan and Nigam 1969) in
connection with obtaining the invariant elastic constants.

A similar exercise with (&) will yield, for the class G:m (Srinivasan 1970)

dijr = d1vaivzjva + d2(vaidij + v3;dix) + davzidjx 4)
where v3 is the sixfold axis. Similarly, for the uniaxial crystals, we have frona)(1
(Chandrasekhar and Srinivasan 1972)

Xij = X18ij + X2v3iv3; (%)
wherews is the unique axis ang; corresponds to isotropy.

The first step in the generation of orthonormal tensor basis is one of writing the

Kronecker deltas,; in the place ofy,; in (1a) to (1c). They will assume, respectively,
the form

Xij = 84i8pj Xap (6a)
dijk = Saisbjackxabc (6b)
Cijtm = 84i0pjSckSam X abea (6€)
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where the coefficientsX are similar to theA in (1). Now one can subject the
expressions @—(6c) to the symmetries of any crystal class and then derive the elements
of the basis appropriate to that class. Instead we can take the form-invariant expression for
any given class and straightaway replace theby the §,; to obtain the elements of the
basis. As an illustration, let us consider the simplest example, namely, the expression (5).
According to the present scheme, the elements of the basis are
8ij 83i83;.- (7)
However, these are neither orthogonal nor normalized. The next step, therefore, is to
orthonormalize them by the usual Gram—Schmidt process and the result is
1 1
T = —3;; T = —
ij \/:_3 J ij \/6
The analogue of (5) for the monoclinic system, with normal to thevsv-plane, is
(Chandrasekhar and Srinivasan 1972)

(3083i03; — 8ij). (8)

Xij = A11viivij + Agovziv2; + Azzvaivz; + Az1(vaivy + viivs)). ()]

Under the replacement scheme the elements are

81i61; 82i62; 8303 (83;81; + 81;63)). (10)
The elements of the orthonormal basis are those given by (8) together with
1 1
T,;” = ﬁ(zsli(slj + 831837 — &ij) T,ﬁv = 72(5&'51]' +61;83;).  (11)
In constructing this basis we have made use of the identity
81i61j + 82i82; + 03;83; = §;j (12)

which is a particular case of a more general identity (Srinivasan 1985)
V1iV1j + V2iV2; — COS@(U]_,’VZJ‘ + vz,»vlj) + S|n2 91)3,'1)3]' = S|n2 95,‘] (13)

with v,; is replaced by,; andé = 90°. In addition, if we generate the elements V and
VI from IV in (11) by cyclic permutation of{1, 2, 3}, then the sefl, ..., VI} will be the
complete orthonormal basis for the second-rank symmetric tensor.

Next, turning our attention to the third-rank tensor, in particular, to expression (4), the
elements obtained in accordance with the first step of the recipe are

838303k 838k (83;8ix + 83k8ij)- (14)

On subjecting these elements to the Gram—Schmidt process, we obtain
Tiy = 838303

TH — 1
ijk «/é
szlil = %(83}‘5% + 8310ij — 203;03;63¢).

These are the elements of the basis conforming to the symmetries of the mlass 6

The set given by (15) is a subset of the set comprising the elements of the basis for the
most general case, namely, the noncentrosymmetric triclinic case. In the actual exercise,
therefore, we start with (9§ and follow the recipe to construct the orthonormal tensor
basis which spans the space of the third-rank tensor representing the piezoelectric effect and
having the index symmetwy; ;. = dit;; the use of the identity (12) is, of course, understood.
The set of elementsl, ..., V, XVI} of the basis given in table 1. Elements labelled VI

(83;6x — 63;63;83k) (15)
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Table 1. Orthonormal basis.

T}, = 8318303 Tih = 25 (a8 — 8a:63;83)
T,-;-/{.I = %(83j3ik + 838ij — 203i63;63¢)
T = J5 (2558100 — Saidji — 8283 53)
Th= 2[2(82:83; 014 + 8181, 83 + 83i83;83c) — 83;8ik — S3k8ij]

T = 5 (806283 + 8183820

Table 2. Elements of the orthonormal basis belonging to different crystal classes. For
convenience the elements are referred to only by their label in Roman numerals.

Element Class

I to X m(L x2)®

VI to XV m(L x3)

I to lll Amm, 6mm mm2 - — 2(||x3)
IV and V - } mm2 4 — 2(]lx3)
XVI to XVIII 222, 42m, 23,43n — 4 2(|1x2)2  2(]|x3)
Xl to XV — — —  2(llx2)

I to IV — — 46 3

XVl and XVII 422, 622 32 46 3

VI to X — 32 6 3

Xl to XV 6m2(m L x1)2 — 6 3

I to Il 3m(m L x1)®

Xl to XVII 3m(m L x1)

I to Il 3m(m L x2)

VI to X B 3m(m L x7)

XVI and XVII 6m2(m L x7) 3m(m L x)

@ Standard setting.

Ox1x2x3 is the standard rectangular Cartesian system (Nye 1976) the choice of which with
respect to the symmetry element is indicated parenthetically in those cases where alternate
settings are used.

to X can be obtained, respectively, from those with labels | to V by cyclic permutation of
{1, 2, 3}; and similarly XI to XV, respectively, from VI to X; and XVII and XVIII starting
from XVI. Table 2 gives the symmetry class of the different elements of the basis.

In terms of this basis, the decompositiondf; is given by

dije =Y _(d, TOTS (16)
K

where
d. T%) = dip T, 17)

represents the inner product @f; and theKth eIement,Ti’?, of the basis. Table 3 lists
the expressions for the inner productdf, with each element of the basis. The formulae
are given in terms of/;; in two-suffix notation with regard to the last two indices, the
replacement scheme (Nye 1976) beidd) — 1, (220 — 2, (33) — 3, (23,32 — 4,
(3L, 13) — 5, (12, 21) — 6; and

dinn=dn di22 = di2 di23 = 3d14 di31 = 3d1s di12 = 3dse. (18)
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Since the basis is orthonormal, the norm is given by

Idf = {Z(d,TK>2}
K

As illustration we shall consider the class: 3in the standard setting (Nye 1976) of the
coordinate system, for which we have

—dp1 = dpo = —3d16 dis = dp4 d31 = dsz2 ds3 (20)

and all other components are zero. For this class, we see, from table 2, that the relevant
elements of the basis are | to Il and Xl to XVII. Taking the expressions for the respective
inner products from table 3, together with the relations (20), we obtain

ld || = [di; + 243 + dis + 4d3,] V2. (21)

This agrees exactly with the norm derived using the decomposition in terms of the irreducible
tensors (Jerphagnaet al 1978).

1
2

(19)

Table 3. Expressions for the inner product. These are given in terms of the piezoelectric
coefficients in two-suffix notation.

@, T =dss d. ) = J5(ds1 + dap) (d, Ty = L(dis + d24)
d, TV = %(dal—dsz) d. TY) = 3(dis — d2a)
d.T) =dn d. TV = 5 (d12 + d1a) d. TV = 5(da + dzs)
d.T%) = S5 (di2 — d1y) (d. T%) = J(dos — d3s)
@, T¥) =dp d. TX) = Z5(dos + d) (d, X!y = 3(d34 + die)
d. TXY) = 2 (das — d21) (d, T¥V) = 1(dss — die)
(d,TXVI)Z%d]A (d,TXVII):%dZS (d,TXV]”):%dQ,G

3. Discussion

The present method of constructing orthonormal tensor basis can easily be extended to
(physical property) tensor of any rank. On the other hand, method | works on the invariance
of the elastic strain-energy function under a finite group of transformations defining the
symmetry class of the crystal and appears to be applicable only to elastic constants. It treats
the strain-energy function as a polynomial in strain componentsfor which the theory
of invariants (Weyl 1946) ensures the existence of a finite integrity basis. Smith and Rivlin
(1958, Smith 1967) have determined the integrity basis for invariant functions foir each
of the 32 crystallographic point groups; and Tu (1968) used the integrity basis to construct
an orthonormal tensor basis for second-order as well as third-order elastic constants.

The same orthonormal basis for the elastic stiffness ted$g, can be generated
with the help of form-invariant expressions 6, reported (Srinivasan and Nigam 1969)
earlier. In this basis, the elements of the isotropic case (Tu 1968) need special consideration
for reasons which the following discussion will reveal.

The three isotropic tensors (Temple 1960) of rank four are

(Sijakm aikgjm aimajk (22)
which due to the symmetry
Cijkm = Cjitm = Cijmk = Cjimk (23)
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reduce to two
Qijkm = 0ijSkm Bijkm = GixSjm + Simdjr) (24)

where we have used the same notation as Tu (1968). When these are orthonormalized they
become

1
ijkm 3%ijk ijkm 6\/5
With these two elements the nearest isotropic tensor for any crystal class is defined (Tu
1968) by

(3Bijrm — 2 jim)- (25)

11
Chim =D _(C.A)AL (26)
K=I
where the inner products in (26) are
2
(C,A"y = (A +2B) (C,A""y= —-(A—-B+30) 27
G (27)

and

A= 3(Cr1+ Co+ C33) B = 1(Ci2+ C23+ C3) C = $(Cas+ Cs5+ Cep).
(28)

In (28) we have used the well-known two-suffix notation for the elastic constants. On using
(27) and (28) in (26) to find expressions f6f,;, = CY,, C?,, = €%, and C,,; = C3,,
we obtain

Ci1 = §(3A 4+ 2B +40) €, =1(A+4B -20)

(29)
Ch=3%A—-B+30) =1, —cy.

These are precisely the expressions derived by Voigt (1889) for the orientational averages
of the components of elastic stiffness tensor for polycrystalline aggregates. If one uses the
elastic compliance tensd;, instead ofC;;, in (26), then one will obtain the analogue
of (29) for the compliance tensor, and those agree exactly with the orientational averages
derived by Reuss (1929) for the elastic compliance coefficients.

Next, when we take the contraction 6f;,, respectively, withy;j, and g, in (24)
we have

(Cijkm» %ijkm) = 3(A + 2B) (Cijkm» Bijkm) = 3(A + 2C). (30)

These two can be identified as the two scalar (irreducible tensor of weight zero) parts of
method Il (Jerphagnoat al 1978) but for the presence of the numerical factor of 3 in (30).
This difference arises due to the definition of the scalar part in which a factor of 1/3 is
introduced. Similarly, the nearest isotropic tensor for a second-rank tensor can be worked
out using the element | in (8). The only independent component of the nearest isotropic
tensor will be proportional to the trace of the second-rank tensor.

The nearest isotropic tensor, for obvious reasons, does not exist in the case of the
piezoelectric effect. However, the choice of the appropriate elements of the basis in a given
coordinate system can be illustrated as follows. Let us consider AT-cut quartz (Mason 1950)
belonging to the point group 32, for which, in the standard setting-es is the threefold
axis and thex-axis, the twofold axis. Let this coordinate system be rotated through an
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angle—0(= 35°) about thex-axis, so that the new-axis is perpendicular to the plane of

the AT-cut plate. The non-vanishing piezoelectric coefficients in the new system are
dyy dy, diy ds :

déS déG

The form (31) corresponds to the class 2 with the difference that itlieection is along

the twofold axis instead of the-direction (cf table 2). Hence the basis comprises the

elements VI to X and XVI to XVIII. Using the respective expressions from table 3, the

norm is

Id|| = [di3 + 3(dip+ di2)* + 5 (dos + dig)® + 5(d1, — di3)?
/ ! /, /. ;
+3(ds — di)” + 3dF + dig + dB)] 2. (32)

On expressing the primed coefficients in terms of the unprimed ones (in the standard setting)
and using the relations (Nye 1976)

diy = —dio = —3dse di4 = —dzs (33)
the equation (32) assumes the form
Idll = [4d3; + d)z. (34)

This is exactly what we would have obtained had we chosen the basis for the class 32 from
table 2.

Incidentally, the general invariance of the norm has been demonstrated. It is most
suitable for comparing the strength or the magnitude of any property in different materials
belonging to the same crystal class (Jerphagetad 1978); or different phases of the same
material. For example, the norms of the elastic stiffness tensor (in GPa) and the piezoelectric
tensor (in pC N1), respectively, in the two phases of quartz are

Class |IC [d]l
a-quartz 32 253 4.65
B-quartz 622 255 1.89

where the data for the calculation of the norm have been taken frofnattgolt-Bdrnstein

tables (1979). We find that-quartz is more piezoelectric thahiquartz, whereas the elastic
stiffness is almost the same in the two phases. The norm is very useful for selecting
suitable materials for electro-optic devices, transducers, modulators, acousto-optic devices
and acoustic delay lines.

To summarize, we have developed a recipe for generating an orthonormal tensor basis
for the decomposition of any tensor representing a physical property. This has been
accomplished without using the approach based on the theory of invariants (Weyl 1946).
As illustration we have considered an odd-rank tensor like the piezoelectric tensor, because
odd-rank tensors describing physical properties like piezoelectricity, acoustic gyrotropy may
not lend themselves to decomposition by the use of method I. It is very clear that the present
approach will work very easily for tensor of any rank. Whereas the calculation of the norm
using the decomposition of method I, although possible in principle but not attempted so
far, is very tedious and cumbersome, the present procedure based on the results of method Il
appears to be simple and direct.

The norm provides the link between the three different methods of decomposing a tensor
describing a physical property. Regarding the advantages of different approaches, they are
well documented elsewhere (Jerphagmobral 1978, Srinivasan 1985, 1988) and they will
not be discussed here.
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